Большинство пластиков разлагаются на открытом воздухе под воздействием солнечного света, воздуха, тепла и влаги. Разрушение может проявляться в виде изменений физических и механических свойств, стабильности размеров, обесцвечивания, эрозии поверхности, потери блеска и / или увеличения мутности, как правило, вследствие окисления и расщепления полимерных цепей. Из-за различий в поглощении света и химии алифатические полимеры, такие как полиэтилен (LLDPE) и полипропилен (PP) значительно отличаются характеристиками разложения по сравнению с ароматическими полимерами, такими как поликарбонат (PC) и сложные полиэфиры.
Солнечный свет несет в себе значительную ультрафиолетовую составляющую, а пластмассы часто используются для наружных работ (таких как архитектурное остекление и интерьеры общественного транспорта). Некоторые пластики, такие как акрил, фторопласт и полиэфиримид, по своей природе устойчивы к ультрафиолетовому излучению.
Стандартный поликарбонат не подходит для длительного воздействия УФ-излучения. Чтобы преодолеть это, можно добавить УФ-стабилизаторы к основному материалу. Листы из поликарбоната могут иметь анти-УФ слой, добавленный в качестве специального покрытия или методом соэкструзии для повышения устойчивости к атмосферным воздействиям. Полипропилен (РР) также не подходит для производства продуктов, которые требуют длительного воздействия солнечного света.
Устойчивость некоторых пластиков к атмосферным воздействиям может быть улучшена путем добавления УФ-стабилизаторов для защиты основного полимера. Ультрафиолетовые стабилизаторы в пластмассах обычно действуют, поглощая ультрафиолетовое излучение и рассеивая энергию как низкоуровневое тепло. Используемые химические вещества похожи на те, что содержатся в солнцезащитных средствах, которые защищают кожу от воздействия ультрафиолета. Они часто используются в пластике, включая косметическую упаковку и пленки. Но именно ультрафиолетовое излучение с коротковолновым излучением (УФ-С) обладает большей энергией и наиболее вероятно влияет на пластики (этот тип также используется для облучения, дезинфекции и стерилизации). Однако, в отличие от длинноволнового ультрафиолетового излучения, коротковолновое ультрафиолетовое излучение ослабляется быстрее и не может проходить через обычное стекло или большинство пластиков, поэтому вызываемые им эффекты концентрируются на поверхности.
Тестирование устойчивости к УФ
Индустрия пластмасс стоит перед реальным вызовом - научиться прогнозировать долговечность продукта в зависимости от условий, в которых он будет находиться в течение срока службы. Производители пластикового сырья, производители оборудования и специализированные испытательные лаборатории пытаются смоделировать агрессивное воздействие окружающей среды с помощью ускоренных испытаний на старение. Помимо механического воздействия, вибрации или химических воздействий во время продолжительного использования, продукт также может подвергаться воздействию температуры, влажности и солнечного света.
Климатические камеры для ускоренного атмосферного старения типовые: применяют процедуры охлаждения и нагрева, циклы влажного тепла, и циклы влажности. Также существуют стандартные сроки продолжительности ускоренного атмосферного старения, но часто эти стандарты не оправдывают ожиданий, и до сих пор нет адекватного моделирования воздействия дождя и ветра на внешний вид поверхности.
Поэтому современная практика пытается адаптировать длительность испытаний и агрессивность экстремальных температур к требованиям по срокам службы конечного продукта. Например, в автомобилестроении каждый производитель автомобилей имеет свои собственные стандарты для моделирования поведения деталей, которые могут быть подвержены экстремальным температурам и радиационному воздействию. Учитывается даже расположение таких деталей внутри кабины автомобиля.
Использование УФ для склеивания
Ультрафиолетовый свет также может быть применен при обработке материалов. Светоотвердевающие материалы используются в качестве адгезивов (в основном для стекла, пластика, металла и керамики), однородных покрытий для электроники и в качестве декора, герметиков для электроники, особенно в гибких контурах, герметиках, маскирующих материалах и прокладках для защиты от влаги.
Светоотвердевающие клеи становятся твердыми за считанные секунды при воздействии длинноволнового ультрафиолета и / или видимого света. Они оптимизируют скорость сборки, увеличивают пропускную способность продукта и обеспечивают 100% поточный контроль. Они подходят для склеивания пластиков, металлов, стекла и других материалов. Также находят множество применений в электронике, сборке медицинских приборов, авиакосмической промышленности, оптоэлектронике, оптике, автомобильных и электронных дисплеях.
Оборудование для светоотвердевания включает в себя точечные светильники (для небольших площадей), прожекторные лампы (для больших площадей) и конвейеры (для крупномасштабного производства). Радиометры используются для измерения интенсивности света.
Светоотверждаемые материалы (LCM), используемые в качестве адгезивов, обычно представляют собой однокомпонентные смеси олигомеров, мономеров, фотоинициаторов и модификаторов (модификаторы твердости, красители, флуоресцентные агенты, загустители, смачивающие агенты и т. Д.). Более 95% LCM в диапазоне Intertronics Dymax составляют акрилаты (уретановая основа с акриловой функциональной группой). Баланс представляют собой катионные эпоксидные смолы. Эти акрилаты и катионные эпоксидные смолы, помимо того, что они являются светоотверждаемыми, значительно отличаются от традиционных акриловых и эпоксидных смол. Эти два химических материала также во многом отличаются друг от друга.
В последнее время светодиоды используются для отверждения клеев, покрытий и средств для временной маскировки. Они оптимизированы для использования с лампами УФ-отверждения, изготовленными со светодиодами, что может представлять собой значительные преимущества по сравнению с обычными системами УФ-отверждения ламп. Эти преимущества включают в себя:
• более низкие температуры отверждения
• снижение интенсивности со временем
• более последовательные результаты лечения
• снижение энергопотребления
• снижение затрат
Тем не менее, УФ-лампы на основе светодиодов обеспечивают специфический ультрафиолетовый свет с узкой полосой пропускания, который не всегда оптимален для клеев, которые были разработаны для реакции на ультрафиолетовые лампы широкого спектра действия. Поэтому уникальные клеи были специально разработаны или испытаны для отверждения с помощью светодиодных УФ-ламп. Они варьируются от высоких до сверхбыстрых скоростей отверждения, чтобы приспособиться к конкретным потребностям медицинского оборудования, электроники и промышленной сборки.